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Abstract. Adapting to learners’ needs and providing useful, individualized 
feedback to help them succeed has been a hallmark of most intelligent tutoring 
systems. More recently, to promote deep learning and critical thinking skills in 
STEM disciplines, researchers have begun developing open-ended learning en-
vironments that present learners with complex problems and a set of tools for 
learning and problem solving. To be successful in such environments, learners 
must employ a variety of cognitive skills and metacognitive strategies. This pa-
per discusses a framework that combines a theory-driven, top-down approach 
with a bottom-up, pattern-discovery approach for analyzing learning activity 
data in these environments. Combining these approaches allows for more com-
plex qualitative and quantitative interpretation of a student’s cognitive and met-
acognitive abilities.  The results of this analysis provide a foundation for devel-
oping performance- and behavior-based learner models in conjunction with 
adaptive scaffolding mechanisms to promote effective, personalized learning 
experiences. 

Keywords: metacognition, theory-driven top-down analysis, pattern-driven 
bottom-up analysis, effectiveness measures, pattern mining, adaptivity, tutoring. 

1 Introduction 

Adapting to learners’ needs and providing useful, individualized feedback to help 
them succeed has been a hallmark of most intelligent tutoring systems [12]. To pro-
mote deep learning, critical thinking, and problem-solving skills in STEM disciplines, 
researchers have begun developing open-ended learning environments (OELEs) that 
provide a learning context and a set of tools for learning and solving complex prob-
lems [8]. To be successful in these environments, learners have to employ metacogni-
tive processes to manage, coordinate, and reflect on relevant cognitive processes as 
they search for, interpret, and apply information to construct and test potential prob-
lem solutions. This can present significant challenges to novice learners. They may 
lack both the proficiency to use the system’s tools and the experience and understand-
ing necessary to explicitly regulate their learning and problem solving. Traditionally, 
learning behavior in intelligent tutors and OELEs are assessed with theory-driven 
metrics and context-driven hypotheses about the students’ learning tasks. In recent 
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years, data mining techniques that analyze students' logged activity data have also 
been utilized to discover important aspects of how students learn [13]. 

This paper discusses a framework for analyzing learning activity data in OELEs 
that combines top-down metrics and bottom-up pattern discovery. This integrated 
framework can be employed to build detailed models of students’ learning behaviors 
and strategies, which can subsequently identify opportunities for providing adaptive 
scaffolds to students as they use the system. We instantiate this task-driven analytics 
framework in the context of Betty's Brain [9], an OELE in which students learn sci-
ence by constructing causal models. A case study illustrates the benefits of incorporat-
ing top-down and bottom-up techniques in concert to characterize the learning behav-
ior of students in an OELE. 

2 Background and Related Research 

Flavell [3] defined metacognition as “thinking about one’s own thinking.”  From an 
information-processing perspective, Winne [18] described cognition as dealing with 
knowledge of objects and operations on objects (the object level), while characteriz-
ing metacognition as the corresponding meta level that contains information about 
when to use particular cognitive processes and how to combine them to accomplish 
larger tasks. Metacognitive monitoring brings the two levels together, as it describes 
the process of observing and evaluating one's own execution of cognitive processes in 
order to exercise control for improving cognition.  

In general, control or regulation of cognition [2] and application of strategies to 
regulate one’s learning are fundamental components of metacognition. Winne and 
Hadwin [19, 20] have proposed a model of self-regulated learning called COPES. 
Learning according to this model occurs in four weakly sequenced and recursive stag-
es: (1) task definition, where the students develop their own understanding of the 
learning task, (2) goal setting and planning, which follow the task definition phase 
and represent the students’ approach to working on the learning task, (3) enactment of 
tactics, which represents that phase where the students’ carry out their plans for learn-
ing, and (4) adaptations to metacognition, which are linked to both in-the-moment 
adjustments of one’s tactics and post-hoc evaluation of one’s approach based on suc-
cesses and failures achieved during enactment.  

Like COPES, we adopt a task modeling approach to interpret students’ learning 
behaviors in the Betty’s Brain environment. Patterns derived from students’ activity 
sequences can be interpreted as stemming from students’ cognitive and metacognitive 
processes associated with the learning tasks. To represent these aspects, we have cre-
ated a model (reported in [5, 15]) that describes tasks important for success in Betty’s 
Brain. A key aspect of this model is the set of dependency relations that map higher-
level metacognitive tasks (e.g., deciding which component of the science model to 
focus on) to lower-level cognitive tasks (e.g., recognizing a causal relationship while 
reading a text passage). This approach emerges from the link between cognitive task 
proficiency and metacognitive planning [8, 17]. Metacognitive knowledge by itself 
may not be sufficient to achieve success, especially when learners lack the cognitive 



skills and background knowledge necessary for understanding and organizing the 
problem under study [1]. 

Several OELEs have been designed to provide adaptive scaffolds. For example, 
Ecolab [11] intervenes whenever the student specifies an incorrect relationship (e.g., 
caterpillars eat thistles). It notifies students that the relationship is incorrect, and pro-
vides corrective hints. Should students continue to struggle, the system will tell stu-
dents exactly how to complete the task (e.g., you need to model the relationship “cat-
erpillars eat grass”). Learners using Ecolab are free to choose the order in which they 
perform their learning activities, and the system uses information about the number of 
student errors to select activities that are within the student's zone of proximal devel-
opment [10]. If students choose a learning activity that the system has deemed too 
easy or too difficult, the system prompts them to reconsider their choice. In Crystal 
Island [16] learners take on the role of a microbiologist to find the identity and source 
of an infectious disease plaguing the island research station. As learners explore the 
island and complete tasks, the system keeps track of the number of laboratory exper-
iments that learners have conducted, and after every five experiments, it intervenes 
and requires students to correctly answer questions about microbiology. The agent 
also tracks information that learners encounter while conversing with computer-
controlled characters, and it quizzes students on that information later. 

These two analysis techniques do not take into account how students coordinate 
their use of system tools to complete their learning tasks. Our approach combines a 
cognitive and metacognitive model of the learning task with theory-driven measures 
to analyze students’ activities and use of tools. Specifically, we track information 
related to students’ ability to apply information they have previously encountered 
within the learning environment as they complete their learning and problem-solving 
tasks. However, an analysis based on these theory-driven measures and patterns of 
actions derived from the task model is not sufficient to cover the wide variety of dif-
ferent behaviors and strategies students employ during learning and problem-solving. 
Therefore, our analysis framework includes data-driven sequence mining techniques 
[6, 7] to identify the patterns of activity that students actually employ in the learning 
environment. In this paper, we map the identified patterns of student actions back into 
the context of students’ sequences of activities, employing the theory-driven measures 
to differentiate behaviors that result in the same activity pattern, and then link them to 
skills or strategies in the cognitive/metacognitive task model. 

3 Betty’s Brain: An OELE for Learning Science 

The Betty's Brain learning environment [9] presents students with the task of teach-
ing scientific models to a virtual agent named Betty. These models take the form of 
causal concept maps that represent the relevant science phenomena as a set of entities 
connected by directed links that represent causal relations. Once taught, Betty can use 
the map to reason about the domain by answering causal questions and explaining 
those answers. The goal for students using Betty's Brain is to teach Betty a causal map 
that matches a hidden, expert model of the domain.  



The students' learning and teaching tasks are organized around three activities: (1) 
reading hypertext resources, (2) building the map, and (3) assessing the correctness of 
the map. The hypertext resources describe the science topic under study (e.g., climate 
change) by breaking it down into a set of sub-topics. Each sub-topic describes a sys-
tem or a process (e.g., the greenhouse effect) in terms of entities (e.g., absorbed heat 
energy) and causal relations among those entities (absorbed heat energy increases the 
average global temperature). As students read, they need to identify causal relations 
and then explicitly teach those relations to Betty by adding them to the current causal 
map.  

Learners can assess the quality of their current map by having Betty take a quiz on 
one or all of the sub-topics in the resources. Fig. 1 illustrates the Betty’s Brain quiz-
zing interface. Quizzes are designed to reflect the current state of the student's map:  a 
set of questions is chosen (in proportion to the completeness of the map) for which 
Betty will generate correct answers. The rest of the quiz questions produce either 
incorrect or incomplete answers. These answers can be used to infer which causal 
links are correct and which causal links may need to be revised or removed from the 
map. Should learners be unsure of how to proceed in their learning task, they can ask 
Mr. Davis for help. Mr. Davis responds by asking the learner about what they are 
trying to do, and he provides information and examples based on learners' questions. 

Fig. 1. The Betty's Brain system showing the quiz interface 



4 Framework integrating Theory- and  Data-Driven Analysis 

Our framework for analyzing OELE learning activity data integrates top-down infor-
mation acquisition/application measures and bottom-up sequential pattern discovery. 
The analysis involves: (1) sequential pattern mining to identify common action pat-
terns; (2) mapping identified patterns back into action sequences to analyze them with 
theory-driven measures; and (3) linking the identified behaviors back to skills and 
strategies in the cognitive/metacognitive task model.   

4.1 Theory-Driven, Top-Down Analysis 

The theory-driven portion of our integrated framework, illustrated in Fig. 2, incorpo-
rates a cognitive and metacognitive model of the tasks that students are expected to 
complete as they progress through an open-ended learning task. In order to analyze 
data in Betty's Brain, we have developed a task model that represents student activi-
ties as a set of cognitive and metacognitive activities related to: (1) knowledge con-
struction, which consists of both information seeking and solution construction; and 
(2) solution evaluation [5, 15].  The directed links in the model represent dependency 
relations. The model indicates that each of these high-level characterizations involves 
a set of metacognitive tasks, and each specific task could be accomplished by apply-
ing any of a number of metacognitive strategies. Information seeking tasks depend on 
one's ability to read, understand, interpret, and translate information from the re-
sources. Solution construction tasks depend on one's ability to apply information 
gained during information seeking and solution evaluation to constructing and refin-
ing the causal map. Finally, solution evaluation tasks depend on the learner's ability to 
interpret the results of solution assessments (quizzes) as actionable information that 
can be used to refine the solution in progress. 

The structure of the cognitive and metacognitive model provides two key pieces of 

Fig. 2. Cognitive/Metacognitive Task Model in Betty's Brain 



theory-driven information that can be used to judge the quality of student behaviors in 
Betty's Brain.  First, the dependency relations between metacognitive and cognitive 
tasks indicate that analyzing a student's behaviors in an OELE must utilize infor-
mation about the student's cognitive ability levels.  Second, the dependency of solu-
tion construction on information seeking and solution evaluation tasks indicates that 
students must coordinate their use of system tools in order to filter information and 
apply what they learn to the construction of a correct solution. Such coordination 
requires some amount of metacognitive regulation as students decide how to apply the 
information they have learned. Thus, analyzing student learning behaviors must also 
assess students' metacognitive regulation through their ability to logically coordinate 
their use of multiple tools within the system. 

To assess a student's cognitive ability levels, our approach judges each action stu-
dents take on the system in terms of its effectiveness [14]. Actions in an OELE are 
considered effective if they move the learner closer to their task goal, and students 
with higher proportions of effective actions are considered to have a higher mastery of 
the cognitive processes listed in the model. In this paper, we focus on solution con-
struction effectiveness. Solution construction actions are considered effective when 
they improve the overall quality of the solution in progress. 

To assess one aspect of student metacognitive regulation, our approach evaluates 
student behaviors using a measure of coherence called action support. Support for a 
particular action represents the extent to which it is informed by information that 
could have been acquired through previous actions. For example, information seeking 
actions (e.g., reading about a causal relationship) can provide support for future solu-
tion construction actions (e.g., adding the corresponding causal link to the map). Stu-
dents with higher proportions of supported actions are considered to have a higher 
mastery of strategies for coordinating their use of tools within the environment. 

4.2 Data-Driven, Bottom-Up Analysis 

To identify student behaviors in the learning environment, our framework applies a 
sequential pattern mining algorithm to logged records of student actions. To effective-
ly perform sequential data mining on learning interaction traces, raw logs must first 
be transformed into an appropriate sequence of actions. In this step, researcher-
identified categories of actions, corresponding to the relevant system tools and inter-
faces in the cognitive/metacognitive task model, define the set of actions that may 
appear in the activity sequences. This filters out irrelevant information (e.g., cursor 
position) and combines qualitatively similar actions (e.g., performing the same action 
through different interface features). The resulting activity sequences form the input 
to a sequential pattern mining algorithm that identifies common patterns of action. 

In the analysis presented, we employ an algorithm (from Pex-SPAM [4] to identify 
patterns that meet a given sequence mining support threshold, i.e., the identified pat-
terns occur in at least a given percentage of the sequences. To identify patterns that 
are common to the majority of the students, we apply a sequence mining support 
threshold of 50% on the sequential pattern mining algorithm. 



4.3 Integrating Theory-Driven Measures with Data-Driven Analysis 

Common behavior patterns identified by the sequence mining algorithm have to be 
interpreted and analyzed by researchers to identify a relevant subset of important 
patterns that provide a basis for generating actionable insights (e.g., how to scaffold 
user interactions with the learning environment to encourage specific, productive 
behaviors). Our framework maps the patterns back into student sequences to identify 
the individual occurrences of each pattern and then analyzes these instances of the 
patterns in context to more effectively interpret and differentiate different behaviors 
that result in the same action pattern. To do this, we employ the information acquisi-
tion and application measures along with a measure of pattern coherence, which de-
scribes whether or not pairs of actions form a coherent pattern such that: (i) an earlier 
action provides support for a later action, or (ii) both actions are supported by a com-
mon previous action (which may have occurred before the pattern instance). 

By analyzing the action support and effectiveness of the discovered frequent pat-
tern instances, our framework can distinguish a variety of behaviors and strategies 
that are defined by the same sequence of actions. The support and effectiveness 
measures apply to individual actions, and may be used to refine the definition of ca-
nonical actions by applying thresholds to the action support and effectiveness values. 
For example, this may result in further classifying a read statement as an ineffective-
read versus an effective-read. Whereas this information may be very useful in contex-
tualizing the meaning and use of derived patterns that contain these actions, they may 
also have the effect of reducing the frequency of the observed pattern. For example, 
the qualification of actions by their action support and effectiveness measures may 
reduce the occurrence of patterns that contain these actions to below 50%, making 
those patterns ineligible for further analysis. To overcome this problem, our integrated 
framework incorporates these measures for further interpretation only after discover-
ing common patterns using the sequence mining approach. 

5 OELE Study and Results 

Our analysis is based on data collected from a recent middle school classroom 
study with Betty's Brain. The study tested the effectiveness of two support modules 
designed to scaffold students' understanding of cognitive skills and metacognitive 
strategies important for success in building the correct causal map. The Knowledge 
Construction (KC) support module scaffolded students' understanding of how to con-
struct knowledge by identifying causal relations in the resources, and the Solution 
Evaluation (SE) support module scaffolded students understanding of how to monitor 
Betty's progress using the quiz results to identify correct and incorrect causal links on 
Betty's map. Participants were divided into four treatment groups. The Knowledge 
Construction group (KC-G) used a version of Betty's Brain that included the KC sup-
port module and a causal link tutorial that they could access at any time during learn-
ing. The Solution Evaluation group (SE-G) used a version of Betty's Brain that in-
cluded the SE support Module and a marking links correct tutorial that they could 
access at any time during learning. In addition to the KC and SE groups, the experi-



ment included a Control group (Con-G) and a Full Support group (Full-G). The con-
trol group used a version of Betty's Brain that included neither the tutorials nor the 
support modules, and the full support group used a version of Betty's Brain that in-
cluded both tutorials and support modules. 

Students used the Betty's Brain system to learn about climate change. The expert 
map includes 22 concepts and 25 links representing the greenhouse effect, human 
activities linked to the greenhouse effect, and potential impact of the greenhouse ef-
fect on climate. The hypermedia resources on climate change contain 31 hypertext 
pages with a Flesch-Kincaid reading grade level of 8.4. Learning was assessed using a 
pre-post test design. Each written test was made up of five questions that asked stu-
dents to consider a given scenario (e.g., a significant increase in the use of road vehi-
cles) and explain its causal impact on climate change. The maximum combined score 
for the five questions was 16. 

The experimental analysis reported in this paper used data from 20 KC-G students, 
17 SE-G students, 15 Con-G students, and 16 Full-G students. The study was con-
ducted for 9 school days, with students participating for a 60-minute class period each 
day. The first four class periods included a pre-test and training with Betty’s Brain 
and causal modeling. Students then spent four class periods (days 5-8) working with 
their respective versions of the Betty's Brain system with minimal intervention by the 
teachers and the researchers. On the ninth day, students completed the post-test that 
was identical to the pre-test. 

To extract the activity sequences for mining, log events captured by the learning 
environment were mapped to sequences of canonical actions in five primary catego-
ries [6, 7]: (1) Reading: students access a page in the resources; (2) Causal Map Edit-
ing: students edit the causal map, with actions further divided by whether they operate 
on a causal link or a concept and whether the action was an addition, removal, or 
modification; (3) Querying Betty: students use a template to ask Betty a question, and 
she uses causal reasoning with the current map; (4) Explanation: students ask Betty to 
explain her answer to a query or quiz question; and (5) Quizzing: students have Betty 
take a quiz. 

Table 1 presents student pre-to-post learning gains and students’ best causal map 
scores 1 for each treatment in the intervention. A repeated measures ANOVA per-
formed on the pre- and post-test data revealed a significant effect of time on pre-to-
post-test scores (F = 59.31, p < .001, η2

p= 0.481), but it failed to reveal a significant 
effect of treatment (F = 0.988, p > .05, η2

p = 0.044). Similarly, an ANOVA revealed 
no significant effect of the treatment on map scores. Clearly all students learned as the 
result of the intervention and several students produced a significant portion of the 
correct causal map. 

However, the small sample sizes and the large variations in performance within 
groups (much more so than across groups) make detailed analysis of the experimental 
treatments difficult. Therefore, in our application of the analysis framework to data 

1 The best map score is the highest map score a student achieved at any time during the inter-
vention, calculated as the number of correct casual links minus the number of incorrect 
causal links. 

                                                           



from this study, we focus on analyzing the different learning behaviors corresponding 
to a given action pattern and comparing the occurrence of these behaviors between 
students who had high map scores and those who had low map scores, without regard 
to treatment. The median map score was 7.5, so we consider the students with a map 
score of 7 or lower as the “LowMap” group and the ones with a map score of 8 or 
higher as the “HiMap” group. Below we apply our analysis framework to this data. 

Table 1. Performance [mean (s.d.)] by Treatment 

Group Pre-Test Post-Test Gain Best Map 
Con 5.07 (2.03) 6.10 (2.64) 1.03 (1.99) 8.87 (8.20) 
KC 3.85 (2.54) 5.13 (3.37) 1.28 (2.33) 9.55 (6.64) 
SE 4.41 (1.97) 6.82 (2.33) 2.41 (1.92) 9.53 (7.55) 

Full 3.88 (1.77) 6.78 (2.76) 2.91 (1.76) 7.25 (6.36) 
   
The results of the sequence mining on students’ action sequences showed that 

[Remove Link (RL)]→[Read (R)]→[Add Link (AL)] was one of a set of frequent 
patterns. This pattern suggests the possibility of the student correcting their map by 
removing a link and reading relevant resources to replace it with a corrected link. The 
pattern coherence and effectiveness measures allowed us to break this pattern down 
into a number of distinct behaviors. First, coherent versions of the pattern (i.e., in 
which the two link edits are coherent and the read followed by link addition are co-
herent) appear to indicate an informed map correction behavior. However, when the 
two link edits are not coherent, rather than a correction, the link removal appears to be 
part of a different behavior from the link addition. Therefore, we also consider the 
sub-pattern R→AL separately as an informed map editing behavior if the sub-pattern 
is coherent and an uninformed map editing behavior if it is not. Additionally, any of 
these different behaviors can be effective (improve the map score) or ineffective (re-
duce the map score or leave it unchanged). 

Table 2 lists these different behaviors and their frequency in the analyzed study. 
Overall, the majority of informed map correction attempts were ineffective (a 38% 
effectiveness rate), despite the majority of all informed map additions being effective 
(a 58% effectiveness rate). This suggests that further support and scaffolding may be 
important for helping students integrate their solution evaluation and knowledge con-
struction activities in order to not only identify problems, but also to correct them. 
Interestingly, the HiMap group tended to employ the informed map correction behav-
ior about as effectively as the LowMap group (39% versus 37%, respectively), despite 
having a higher overall effectiveness for link edits in general (58% versus 50%). 
However, the HiMap group was over three times more likely to engage in informed 
map correction (149 instances versus 46 instances, respectively). Further, as Fig. 3 
illustrates, the HiMap group tended to perform the majority of their informed map 
correction activities later in the intervention than the LowMap group. This suggests 
that the HiMap group persisted with this important monitoring activity longer than the 
LowMap group, which may have been a factor in the HiMap group’s greater success.  



Analysis of the R→AL sub-pattern further illustrates the importance of considering 
pattern coherence and effectiveness in analyzing student behavior. While 64% of the 
instances of this pattern were coherent (i.e., corresponding to informed map editing as 
opposed to uninformed map editing), this ratio varied between the HiMap group, 
where 69% of the instances corresponded to informed map editing, and the LoMap 
group, where only 59% of the additions were informed. This less systematic behavior 
in employing reading to directly inform map additions may have contributed to the 
lower performance in the LoMap group. 

Further, effectiveness differed drastically between coherent and incoherent in-
stances of the R→AL pattern in both groups. Although the HiMap group performed 
more effectively than the LoMap group in both cases (60% to 51% effectiveness when 
the pattern was coherent, and 34% to 21% when it was not), this still suggests that 
further scaffolding of systematic knowledge construction strategies could provide 
tangible benefits both to the high- and low-performing students. 

Table 2. RL→R→AL Behaviors 

Pattern Coherent Effective Behavior 
Interpretation Occurrence 

RL→R→AL Yes Yes Informed Map Correction 
(Effective) 75 

RL→R→AL Yes No Informed Map Correction 
(Ineffective) 120 

R→AL Yes Yes Informed Map Addition 
(Effective) 509 

R→AL Yes No Informed Map Addition 
(Ineffective) 366 

R→AL No Yes Uninformed Map Addition 
(Effective) 140 

R→AL No No Uninformed Map Addition 
(Ineffective) 344 

6 CONCLUSION 

In this paper, we have presented a framework for analyzing learning activity data 
in open-ended learning environments that integrates top-down, theory-driven 
measures and bottom-up, data-driven pattern discovery. For top-down analysis of 

Fig. 3. Heat map of informed map correction occurrences by group 



learning behaviors, our framework focuses on (i) the learner's acquisition and applica-
tion of information encountered while they perform their task-related activities in the 
learning environment and (ii) the impact of these activities with respect to the learning 
task. For bottom-up, data-driven discovery of learning behaviors, our framework em-
ploys data mining techniques for identifying frequent patterns of action in logs of 
students' learning and problem-solving activities. This integrated analysis framework 
can be used to build and extend learner models to employ evidence of learning behav-
iors and strategies from a combination of the theory-driven measures and the patterns 
of student actions. 

We presented results from a case study of activity patterns identified in data from 
the Betty's Brain learning environment. This analysis illustrates the importance of 
differentiating discovered patterns of action with action support, pattern coherence, 
and effectiveness measures in the context of the students' other activities. Further, the 
analysis showed potentially important differences between high and low-performing 
students in terms of their learning behaviors, which were not apparent from analysis 
with either the theory-driven measures or the action pattern mining in isolation. These 
results illustrate the benefits of incorporating top-down and bottom-up techniques in 
concert to precisely characterize the learning behavior of students in an open-ended 
environment and have direct implications for extending the learner model employed 
in Betty's Brain. In future work, we intend to incorporate pattern detectors, based on 
the identified patterns and the information acquisition/application measures, into the 
Betty's Brain learner model in order to directly test the results of this analysis in im-
proving learner scaffolding. 
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